

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E / B. Tech (Full Time) END SEMESTER EXAMINATIONS – APRIL / MAY 2019

COMMON TO ALL BRANCH

Semester iii

MA7302 – Partial Differential Equation

(Regulation 2015 – Mathematics)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

Q.No	Questions	Marks
1.	Eliminate the arbitrary constants a & b from $z = (x^2 + a)(y^2 + b)$	2
2.	Solve $(D^2 - 4DD' + 3D'^2)z = 0$	2
3.	Define Dirichlet's Conditions.	2
4.	Write the formula of Fourier constants to expand $f(x)$ in $(-l, l)$.	2
5.	A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = y_0 \sin \frac{\pi x}{l}$ from which it is released at time $t = 0$. Formulate this problem as the boundary value problem.	2
6.	Write down the three possible solutions of Laplace equation in two-dimensions.	2
7.	Define Thomas algorithm.	2
8.	Define Alternating Direction implicit (ADI) method	2
9.	Distinguish between direct and iterative method of solving simultaneous equation.	2
10.	What is the purpose of Liebmann's process?	2

PART- B (5 x 16 = 80 Marks)

(Q. No 11 is Compulsory)

Q.No	Questions	Marks														
11.	A rod 30 cm long has its ends A and B kept at 20° and 80° respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0°C and kept so. Find the resulting temperature function $u(x, t)$ taking $x = 0$ at A.	16														
12.	a) (i) Solve: $p^2 + x^2 y^2 q^2 = x^2 z^2$ (ii) Solve: $z^2(p^2 + q^2) = x^2 + y^2$ OR b) (i) Solve $(y + z)p + (z + x)q = x + y$ (ii) Solve $(D^2 + 2DD' + D'^2)z = x^2 y + e^{x-y}$	8 8 8 8														
13.	a)(i) If $f(x) = \frac{1}{2}(\pi - x)$, find the Fourier series for period 2π in the interval $(0, 2\pi)$. Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ (ii) Find the Half range Fourier cosine series of $f(x) = (x - 1)^2$ in $(0, 1)$. OR b)(i) Determine the first two harmonic of the Fourier series for the following values.	10 6 10														
	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 15%;">X:</td> <td style="width: 15%;">0</td> <td style="width: 15%;">$\frac{\pi}{3}$</td> <td style="width: 15%;">$\frac{2\pi}{3}$</td> <td style="width: 15%;">π</td> <td style="width: 15%;">$\frac{4\pi}{3}$</td> <td style="width: 15%;">$\frac{5\pi}{3}$</td> </tr> <tr> <td>Y:</td> <td>1.98</td> <td>1.30</td> <td>1.05</td> <td>1.30</td> <td>-0.88</td> <td>-0.25</td> </tr> </table>	X:	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	Y:	1.98	1.30	1.05	1.30	-0.88	-0.25	
X:	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$										
Y:	1.98	1.30	1.05	1.30	-0.88	-0.25										

	(ii) Find the Half range Fourier sine series of $f(x) = x$ in $(0, l)$.	6
14.	a) Solve the following system of equations by Gaussian elimination methods $\begin{aligned} x + y + z &= 9 \\ 2x - 3y + 4z &= 13 \\ 3x + 4y + 5z &= 40 \end{aligned}$ <p style="text-align: center;">OR</p> b) Solve by Crank-Nicolson's method $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ for $0 < x < 1, t > 0$, given that $u(0, t) = 0, u(1, t) = 0$ and $u(x, 0) = 100(x - x^2)$.	16
		16
15.	a) Solve the following system of equations using Gauss Seidel iteration method. $\begin{aligned} 10x + 2y + z &= 9 \\ x + 10y - z &= -22 \\ -2x + 3y + 10z &= 22 \end{aligned}$ <p style="text-align: center;">OR</p> b) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides $x = 0 = y; x = 3 = y$; with $u = 0$ on the boundaries and mesh length 1.	16
		16

